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Abstract

There are many models describing population dynamics in terms of
total numbers or densities in the modeled habitat. One such model is
the Lotka-Volterra Equations. Here, I specify a simple extension of this
model that describes population densities distributed over a given space.
Organisms with the same position interact according to the Lotka-Volterra
model, and organisms have the ability to move to more favorable locations.
Compounding forces are simply combined additively.

1 Food Chain

The basic case will consist of a number N of species, each with an index n
where N ≥ n ≥ 1. Species n will predate on the species n−1, and species 1 will
predate on no species, with each organism receiving a constant amount of energy
from some unspecified source. Species N will have no predator. Each species
will breed. Each species may move according to two goals: seeking food and
avoiding predators. Movement and interactions between organisms at the same
position will be discussed separately, and then combined into a full equation
describing the full behavior of the food chain. Tn(R, t) is the total population
of species n in region R at time t.

1.1 Same-Position Interaction

Organisms at the same position will interact with each other. They may breed,
predate, and die. These interactions will be discussed here in isolation. The
model for these interactions will be based on the Lotka-Volterra equations. Us-
ing information from Wikipedia, a form of the Lotka-Volterra equations can be
fit to the model here for N = 2 as follows:

∂P1

∂t
= b1P1 − d1P1P2

∂P2

∂t
= b2P1P2 − d2P2

Here, total population has been replaced with the population density at x⃗. This
model will add the restriction bn, dn ≥ 0 for any n. These equations can be used
to form the special cases of species 1 and N , becoming:

∂P1

∂t
= b1P1 − d1P1P2

∂PN

∂t
= bNPN−1PN − dNPN
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for N > 1. If N = 1, the following combination of the equations, which selects
the terms that describe breeding and death independent on another species, can
be used to describe the system:

∂P1

∂t
= b1P1 − d1P1 = P1(b1 − d1)

To find the equations of a species with an index between 1 and N , another
combination of the equations can be used that selects the terms that describe
breeding and death dependent on another species:

∂Pn

∂t
= bnPn−1Pn − d1PnPn+1

1.2 Summary

Equation for N = 1:

∂P1

∂t
= b1P1 − d1P1 = P1(b1 − d1)

System for N > 1:
∂Pn

∂t
= bnPn−1Pn − d1PnPn+1

∂P1

∂t
= b1P1 − d1P1P2

∂PN

∂t
= bNPN−1PN − dNPN

Where the first equation applies for each species n for N > n > 1.

1.3 Movement

Movement will be discussed here in isolation. With movement alone controlling
organisms, the populations will be conserved, since there is no birth or death.
Therefore, the population distributions can be described with a continuity equa-
tion of the form:

∂Pn

∂t
= −∇ · F⃗n

where F⃗n(x⃗, t) is the flux of the population of species n. The flux at a point is
equal to the velocity of the organisms at that point times the density at that
point:

F⃗n = PnV⃗n

where V⃗n is the velocity of the organisms. The movement velocity is determined
by a taking into account the two factors mentioned above; organisms flee their
predators and seek their prey. The organisms will seek their prey by traveling in
the direction in which the prey density increases the most quickly, so one part
of V⃗n is:

βn∇Pn−1

where βn ≥ 0 is the ”strength” of the urge to seek food. Similarly organisms will
flee their predators by traveling in the direction in which the predator density
decreases the most quickly, so another part of V⃗n is:

−δn∇Pn+1
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where δn ≥ 0. To combine these to goals into a complete V⃗n, they can be added
together to create the linear combination:

V⃗n = βn∇Pn−1 − δn∇Pn+1

Species without predators or prey will have the predator and prey term excluded,
respectively, so:

V⃗1 = −δ1∇P2

V⃗N = βN∇PN−1

as long as N > 1. If N = 1, the sole species has no predator or prey to effect
movement, so the organisms do not move. The pieces defined so far can be
combined into a full movement equation:

∂Pn

∂t
= −∇ ·

(
Pn

(
βn∇Pn−1 − δn∇Pn+1

))
Simplifying (perhaps):

∂Pn

∂t
= −∇ ·

(
Pn

(
βn∇Pn−1 − δn∇Pn+1

))
∂Pn

∂t
= −

(
∇Pn ·

(
βn∇Pn−1 − δn∇Pn+1

)
+ Pn∇ ·

(
βn∇Pn−1 − δn∇Pn+1

))
∂Pn

∂t
= ∇Pn ·

(
βn∇Pn−1 − δn∇Pn+1

)
− Pn

(
βn∇2Pn−1 − δn∇2Pn+1

)
One can alternatively keep the predator and prey terms separate:

∂Pn

∂t
= −∇ ·

(
Pn

(
βn∇Pn−1−δn∇Pn+1

))
∂Pn

∂t
= −∇ ·

(
Pnβn∇Pn−1−Pnδn∇Pn+1

))
∂Pn

∂t
= −∇ ·

(
Pnβn∇Pn−1

)
+∇ ·

(
Pnδn∇Pn+1

)
∂Pn

∂t
= −βn∇ ·

(
Pn∇Pn−1

)
+δn∇ ·

(
Pn∇Pn+1

)
∂Pn

∂t
= −βn

(
∇Pn · ∇Pn−1 + Pn∇2Pn−1

)
+ δn

(
∇Pn · ∇Pn+1 + Pn∇2Pn+1

)
The special case of species 1:

∂P1

∂t
= −∇ ·

(
P1V⃗1

)
∂P1

∂t
= −∇ ·

(
P1

(
− δ1∇P2

))
∂P1

∂t
= δ1∇ ·

(
P1∇P2

)
∂P1

∂t
= δ1

(
∇P1 · ∇P2 + P1∇2P2

)
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The special case of species N :

∂PN

∂t
= −∇ ·

(
PN V⃗N

)
∂PN

∂t
= −∇ ·

(
PN

(
βN∇PN−1

))
∂PN

∂t
= −βN∇ ·

(
PN∇PN−1

)
∂PN

∂t
= −βN

(
∇PN · ∇PN−1 + PN∇2PN−1

)
1.3.1 Summary

Equation for N = 1:

∂P1

∂t
= b1P1 − d1P1 = P1(b1 − d1)

System for N > 1:

∂Pn

∂t
= −∇ ·

(
Pn

(
βn∇Pn−1 − δn∇Pn+1

))
∂P1

∂t
= δ1

(
∇P1 · ∇P2 + P1∇2P2

)
∂PN

∂t
= −βN

(
∇PN · ∇PN−1 + PN∇2PN−1

)
Where the first equation applies for each species n for N > n > 1. Using shorter
forms of the equations for the special cases:

∂Pn

∂t
= −∇ ·

(
Pn

(
βn∇Pn−1 − δn∇Pn+1

))
∂P1

∂t
= δ1∇ ·

(
P1∇P2

)
∂PN

∂t
= −βN∇ ·

(
PN∇PN−1

)
1.4 Full Model

To combine the two pieces of the model, a more general continuity equation can
be used:

∂Pn

∂t
= Sn −∇ · F⃗n

Where Sn(x⃗, t) describes the rate at which organisms are being born and dying
at x⃗ at time t. This was described in section 1.1, so the results formulated there
will be used to determine Sn. For example, one equation from that section is:

∂Pn

∂t
= bnPn−1Pn − d1PnPn+1

The rate at which the organisms are being born and dying in the above equation
(∂Pn

∂t ) can be substituted for Sn:

Sn = bnPn−1Pn − d1PnPn+1
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Substituting this into the continuity equation:

∂Pn

∂t
= bnPn−1Pn − d1PnPn+1 −∇ · F⃗n

Expanding this into a fuller equation:

∂Pn

∂t
= bnPn−1Pn − d1PnPn+1 −∇ ·

(
Pn

(
βn∇Pn−1 − δn∇Pn+1

))
Summary Equation for N = 1:

∂P1

∂t
= b1P1 − d1P1 = P1(b1 − d1)

System for N > 1:

∂Pn

∂t
= bnPn−1Pn − d1PnPn+1 −∇ ·

(
Pn

(
βn∇Pn−1 − δn∇Pn+1

))
∂P1

∂t
= b1P1 − d1P1P2 + δ1

(
∇P1 · ∇P2 + P1∇2P2

)
∂PN

∂t
= bNPN−1PN − dNPN − βN

(
∇PN · ∇PN−1 + PN∇2PN−1

)
Where the first equation applies for each species n for N > n > 1. Using shorter
forms of the equations for the special cases:

∂Pn

∂t
= bnPn−1Pn − d1PnPn+1 −∇ ·

(
Pn

(
βn∇Pn−1 − δn∇Pn+1

))
∂P1

∂t
= b1P1 − d1P1P2 + δ1∇ ·

(
P1∇P2

)
∂PN

∂t
= bNPN−1PN − dNPN − βN∇ ·

(
PN∇PN−1

)
2 Food Web

Here, the model above for a food chain will be extended to arbitrary food
webs. A food web will again contain N species, each with an index n such that
N ≥ n ≥ 1. Unlike the food chain model, however, the index of the species
will not determine its predators and prey. Instead, each species will have a set
of predator species Dn and a set of prey species Bn. These sets will contain
the indices of the pretator and prey species of species n, respectively. Note the
following relationship:

Bn = {x|n ∈ Dx}
Dn = {x|n ∈ Bx}

The fundamental continuity equation from the food chain model can be written:

∂Pn

∂t
= Sn −∇ · (PnV⃗n)

This can be used, with altered definitions of Sn and V⃗n.
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2.1 Same-Position Interaction

The definition of Sn for the normal case was:

Sn = bnPn−1Pn − d1PnPn+1

The food web model needs to combine the multiple possible predator and prey
species’ effects. For this model, each other species in the equation will have its
own coefficient. For example, bn,i will be the coefficient found in the term for
species i in the equation for species n. The effects of each other species will
simply be summed, resulting in the following definition for Sn:

Sn =
∑
i∈Bn

bn,iPnPi −
∑
i∈Dn

dn,iPnPi

For the special cases, i.e. a species with an empty predator or prey set, the
corresponding terms will be replaced with the simpler alternatives that depend
only on the species itself:

Bn = ∅ =⇒ Sn = bnPn −
∑
i∈Dn

dn,iPnPi

Dn = ∅ =⇒ Sn =
∑
i∈Bn

bn,iPnPi − dnPn

Bn, Dn = ∅ =⇒ Sn = Pn(bn − dn)

2.2 Movement

The movement term can be modified similarly. The food chain definition of V⃗n:

V⃗n = βn∇Pn−1 − δn∇Pn+1

Like before, predator and prey species will have its own constant and the effects
of the species will be summed:

V⃗n =
∑
i∈Bn

βn,i∇Pi −
∑
i∈Dn

δn,i∇Pi

When a species has no predator or prey, there is no need for a predator or prey
term. The above formula will work for these cases, since Bn and Dn will be ∅.
This formula can be used to form the full movement term:

−∇ ·
(
Pn

( ∑
i∈Bn

βn,i∇Pi −
∑
i∈Dn

δn,i∇Pi

))
although one may wish to simplify the relevant terms out in these cases.

6



2.3 Full Model

Bn, Dn ̸= ∅ =⇒

∂Pn

∂t
=

∑
i∈Bn

bn,iPnPi −
∑
i∈Dn

dn,iPnPi

−∇ ·
(
Pn

( ∑
i∈Bn

βn,i∇Pi −
∑
i∈Dn

δn,i∇Pi

))
Bn = ∅ =⇒ ∂Pn

∂t
= bnPn −

∑
i∈Dn

dn,iPnPi +∇ ·
(
Pn

∑
i∈Dn

δn,i∇Pi

)
Dn = ∅ =⇒ ∂Pn

∂t
=

∑
i∈Bn

bn,iPnPi − dnPn −∇ ·
(
Pn

∑
i∈Bn

βn,i∇Pi

)
Bn, Dn = ∅ =⇒ ∂Pn

∂t
= Pn(bn − dn)

2.4 Example

This food web will be used as an example:
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The food web can be described with the following sets:

B6 = {4} B5 = {4}
D6 = ∅ D5 = ∅

B4 = {2, 3} B3 = ∅
D4 = {5, 6} D3 = {4}

B2 = {1} B1 = ∅
D2 = {4} D1 = {2}

Using these and the formulas given above, a complete system of equations for
this food web can be created:

∂P6

∂t
= b6,4P6P4 − d6P6 −∇ ·

(
P6β6,4∇P4

)
∂P5

∂t
= b5,4P6P4 − d5P5 −∇ ·

(
P5β5,4∇P4

)
∂P4

∂t
= b4,2P4P2 + b4,3P4P3 − (d4,5P4P5 + d4,6P4P6)

−∇ ·
(
P4

(
β4,2∇P2 + β4,3∇P3 −

(
δ4,5∇P5 + δ4,6∇P6

)))

∂P3

∂t
= b3P3 − d3,4P3P4 +∇ ·

(
P3δ3,4∇P4

)
∂P2

∂t
= b2,1P2P1 − d2,4P2P4 −∇ ·

(
P2

(
β2,1∇P1 − δ2,4∇P4

))
∂P1

∂t
= b1P1 − d1,2P1P2 +∇ ·

(
P1δ1,2∇P2

)
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